

RiotKit’s Infracheck

HTTP healthcheck endpoint + shell healthcheck runner.
Simple, easy to setup, easy to understand. Works perfectly with Docker. A perfectly fitting universal brick in your monitoring.

{
 "checks": {
 "disk-space": {
 "ident": "disk-space=True",
 "output": "There is 350.8GB disk space at '/', nothing to worry about, defined minimum is 15GB\n",
 "status": true
 },
 "docker-health": {
 "ident": "docker-health=True",
 "output": "Docker daemon reports that there is no 'unhealthy' service running in '' space\n",
 "status": true
 },
 "minio": {
 "ident": "minio=True",
 "output": "",
 "status": true
 },
 "replication-running": {
 "ident": "replication-running=True",
 "output": "Replica seems to be in good state\n",
 "status": true
 },
 "storage-synchronization": {
 "ident": "storage-synchronization=True",
 "output": "Storage synchronization looks fine\n",
 "status": true
 }
 },
 "global_status": true
}

Contents:

	Quick start
	1. Requirements

	2. Structure

	3. Configuring a first check

	4. Running checks

	Advanced

	Hooks

	Predefined check types reference
	http

	rkd://

	dir-present

	file-present

	docker-health

	port-open

	replication-running

	free-ram

	domain-expiration

	disk-space

	ovh-expiration

	ssh-fingerprint

	ssh-files-checksum

	ssh-command

	reminder

	load-average-auto

	load-average

	swap-usage-max-percent

	influxdb-query

	postgres

	postgres-primary-streaming-status

	postgres-replica-status

	docker-container-log

	smtp_credentials_check.py

	tls

	tls-docker-network

	Check configuration reference
	type

	description

	results_cache_time

	input

	hooks

	quiet_periods

	Templating
	Reference table

	Example strategy of deploying passwords with Docker Compose and Ansible

	Writing custom checks

	Cache and freshness
	Refresh time

	Wait time

	Customizing check freshness time per check

From authors

Project was started as a part of RiotKit initiative, for the needs of grassroot organizations such as:

	Fighting for better working conditions syndicalist (International Workers Association for example)

	Tenants rights organizations

	Various grassroot organizations that are helping people to organize themselves without authority

RiotKit Collective

Quick start

To monitor applications and the infrastructure parts you need to configure checks.
A configured check is a json file that defines a method name (script to be used) and the input parameters.
Each check is executed when your external monitoring software invokes the HTTP endpoint, or when you execute the shell command.

Infracheck can work as a HTTP endpoint responding with JSON, or as a console command.

[image: _images/quick-start.png]
 [https://asciinema.org/a/237795]
1. Requirements

You need to install all requirements manually if you decide not to use a docker container.

Requirements:

	Python 3.7+

	OpenSSH Client

	sshpass (for SSH checks)

	whois (for domain checks)

	mysql-client (for MySQL checks)

	postgresql-client (for PostgreSQL checks)

	docker client (for Docker checks)

	curl

Python package requirements:

ovh >= 0.5.0, <0.6
psutil >= 5.7.2, < 6
psycopg2-binary >= 2.8.4, < 3
python-dateutil >= 2.8.1, < 3
pytz >= 2019.3
six >= 1.15.0, < 2
tornado >= 5.1.1, < 6
whois >= 0.9.13, < 1
influxdb >= 5.3.1, < 6
msgpack >= 1.0, < 2
rkd>=2.3.3, <3
rkd-python>=2.3.3, <3
docker >= 5
croniter >= 1.0.13, < 1.1

2. Structure

You need to create a project structure from following template:

- checks/
 - http
 - smtp
 - port
- configured/
 - redis
 - duckduckgo_http
 - smtp_is_alive

In checks there should be scripts that will take parameters as environment variables, process and give results.
For simpler cases you may not need to define any scripts, just configure pre-defined ones.

configured should contain your actual use cases, for example “duckduckgo_http” from above example could use “http” check with url “https://duckduckgo.com” as a parameter.

3. Configuring a first check

Let’s assume that we need to check if a page contains given keyword, and does not contain another defined one.
Following check will use curl to fetch page content.

Test cases:

	If page will not load, then THE CHECK RETURNS FAILURE

	If page contains “Server error”, then THE CHECK RETURNS FAILURE

	If page will not contain keyword “iwa”, then THE CHECK RETURNS FAILURE

	If page loads properly and contains “iwa” keyword, then THE CHECK RETURNS SUCCESS

{
 "type": "http",
 "input": {
 "url": "http://iwa-ait.org",
 "expect_keyword": "iwa",
 "not_expect_keyword": "Server error"
 }
}

Hint: You can pass environment variables in parameters - see: Templating section.

4. Running checks

With Docker

You can use a ready-to-use docker image quay.io/riotkit/infracheck or quay.io/riotkit/infracheck for ARM.
Please check the list of available versions [https://quay.io/repository/riotkit/infracheck?tab=tags].

The image will by default expose a HTTP endpoint.

create directory structure that will be present in "/data" inside container (see one of previous steps about the structure)
mkdir checks configured

sudo docker run --name infracheck -p 8000:8000 -v $(pwd):/data -d --rm quay.io/riotkit/infracheck:v2.0-x86_64 \
 --directory=/data --server-path-prefix=/your-secret-code-there

now test it
curl http://localhost:8000/your-secret-code-there/

List of supported environment variables:

	REFRESH_TIME=120

	CHECK_TIMEOUT=120

	WAIT_TIME=0

Without Docker

git clone https://github.com/riotkit-org/infracheck
cd infracheck
rkd :install

run checks in the shell
infracheck --directory=/your-project-directory-path-there --no-server

run the application with webserver and background worker
infracheck --directory=/your-project-directory-path-there --server-port=8000 --refresh-time=120 --log-level=info

Using PIP

sudo pip install infracheck

run checks in the shell
infracheck --directory=/your-project-directory-path-there --no-server

run the application with webserver and background worker
infracheck --directory=/your-project-directory-path-there --server-port=8000 --refresh-time=120 --log-level=info

Advanced

Setting timeout per check: Set INFRACHECK_TIMEOUT environment variable in json file to adjust timeout for given check.

Hooks

After each execution of your checks there is a possibility to execute some commands.

Example:

{
 "type": "disk-space",
 "input": {
 "dir": "/",
 "min_req_space": "6"
 },
 "hooks": {
 "on_each_up": [
 "rm -f /tmp/maintenance.html"
],
 "on_each_down": [
 "echo \"Site under maintenance\" > /tmp/maintenance.html"
]
 }
}

Example above will delete a /tmp/maintenance.html file when disk space will be at acceptable level.
If there will be no enough disk space, then “Site under maintenance” will be written to the /tmp/maintenance.html
With this practical example you can add a rule to your NGINX/Apache gateway to show a maintenance page, when a file is present.

Predefined check types reference

Infracheck comes by default with some standard checks, there is a list of them:

http

Performs a HTTP call using curl.

Example:

{
 "type": "http",
 "input": {
 "url": "http://iwa-ait.org",
 "expect_keyword": "iwa",
 "not_expect_keyword": "Server error"
 }
}

Parameters:

	url

	expect_keyword

	not_expect_keyword

rkd://

Infracheck can execute RiotKit-Do tasks. RKD is a task executor, similar to Makefile or Gradle.
It’s essential feature is a possibility to load tasks from PyPI (Python packages).

Using RKD you can write a Python class, version and release it to PyPI with a list of dependencies, and install in any place
with PIP. A packaged task can require extra dependencies you do not want always to install eg. MySQL, PostgreSQL, Redis or other clients
you want to selectively install on your Infracheck instances.

More information on how to write RKD tasks: in RiotKit-Do’s documentation [https://riotkit-do.readthedocs.io/en/latest/usage/developing-tasks.html#option-2-for-python-developers-task-as-a-class]

{
 "type": "rkd://rkd.standardlib.shell:sh",
 "input": {
 "-c": "ps aux |grep X11"
 }
}

{
 "type": "rkd://my_rkd_check:mysql:temporary-table-size-check",
 "input": {
 "--max": "100000",
 "--host: "localhost",
 "--port": 3306,
 "--user": "infracheck",
 "--password": "${TEMP_TABLE_SIZE_CHECK_PASSWORD}"
 }
}

dir-present

Checks whenever a directory exists.

Parameters:

	dir

file-present

Checks if file is present.

Parameters:

	file_path

docker-health

Checks if containers are healthy.

Parameters:

	docker_env_name (it’s a prefix, to check only containers that names begins with this - idea of docker-compose)

port-open

Checks if the port is open.

Parameters:

	po_host

	po_port (in seconds)

	po_timeout (in seconds)

replication-running

Checks if the MySQL replication is in good state. Works with Docker only.

Parameters:

	container

	mysql_root_password

free-ram

Monitors RAM memory usage to notify that a maximum percent of memory was used.

Parameters:

	max_ram_percentage (in percents eg. 80)

domain-expiration

Check if the domain is close to expiration date or if it is already expired.

Notice: Multiple usage of this check can cause a “request limit exceeded” error to happen

Warning: Due to limits per IP on whois usage we recommend to strongly cache the health check ex. 1-2 days cache,
and in case of checking multiple domains to use feature called “wait time” to sleep between checks,
to not send too many requests a once

Parameters:

	domain (domain name)

	alert_days_before (number of days before expiration date to start alerting)

disk-space

Monitors disk space.

Parameters:

	min_req_space (in gigabytes)

	dir (path)

Example JSON:

{
 "type": "disk-space",
 "input": {
 "dir": "/",
 "min_req_space": "6"
 }
}

ovh-expiration

Checks if a VPS is not expired.
Grab credentials at https://api.ovh.com/createToken/index.cgi

Required privileges on OVH API: “GET /vps*”

Parameters:

	endpoint (ex. ovh-eu)

	app_key

	app_secret

	app_consumer_key

	service_name (ex. somevps.ovh.net)

	days_to_alert (ex. 30 for 30 days)

Example JSON:

{
 "type": "ovh-expiration",
 "input": {
 "endpoint": "ovh-eu",
 "app_key": "xyyyyyyyyyyyyzz",
 "app_secret": "xyxyxyxyyxyxyxyxyxyxxyyxyxyxyxy",
 "app_consumer_key": "xyxyyxyxyxyxyxyxyxyyxyxyxyxyxy",
 "service_name": "vps12345678.ovh.net",
 "days_to_alert": 5
 }
}

ssh-fingerprint

Verifies if remote host fingerprint matches. Helps detecting man-in-the-middle and server takeover attacks.

Parameters:

	expected_fingerprint (example: zsp.net.pl ssh-rsa SOMESOMESOMESOMESOMEKEYHERE)

	method (default: rsa)

	host (example: zsp.net.pl)

	port (example: 22)

ssh-files-checksum

Calls remote process using SSH and expects: the listed files and checksums will be matching

Parameters:

	user (default: root)

	host

	port (default: 22)

	private_key

	password

	ssh_bin (default: ssh)

	sshpass_bin (default: sshpass)

	ssh_opts (example: -o StrictHostKeyChecking=no)

	known_hosts_file (default: ~/.ssh/known_hosts)

	command (default: uname -a)

	timeout: (default: 15, unit: seconds)

	method (default: sha256sum)

	expects (json dict, example: {“/usr/bin/bahub”: “d6e85b50756a08e24c1d46f07b68e288c9e7e565fd662a15baca214f576c34be”})

ssh-command

Calls remote process using SSH and expects: exit code, keywords in the output

Parameters:

	user (default: root)

	host

	port (default: 22)

	private_key

	password

	ssh_bin (default: ssh)

	sshpass_bin (default: sshpass)

	ssh_opts (example: -o StrictHostKeyChecking=no)

	known_hosts_file (default: ~/.ssh/known_hosts)

	command (default: uname -a)

	timeout: (default: 15, unit: seconds)

	expected_keywords (Keywords expected to be in stdout/stderr. Separated by “;”)

	unexpected_keywords (Keywords not expected to be present in stdout/stderr. Separated by “;”)

	expected_exit_code (default: 0)

reminder

Reminds about the recurring date. Example: To extend validity of your hosting account

Parameters:

	ref_date (example: 2019-05-01 for a 1th of May 2019)

	each (values: week; month; year, default: year)

	alert_days_before (default: 5, the health check will be red when there will be 5 days before)

load-average-auto

Checks if the load average is not more than 100%

Parameters:

	maximum_above (unit: processor cores, default: 0.5 - half of a core)

	timing (default: 15. The load average time: 1, 5, 15)

load-average

Checks if the load average is not below specified number

Parameters:

	max_load (unit: processor cores, example: 5.0, default: 1)

	timing (default: 15. The load average time: 1, 5, 15)

swap-usage-max-percent

Defines maximum percentage of allowed swap usage

Parameters:

	max_allowed_percentage (default: 0.0)

influxdb-query

Queries an InfluxDB database and compares results.

Parameters:

	host

	port (default: 8086)

	user

	password

	database

	query

	expected: A json serialized result (not pretty formatted)

Example of JSON serialized result for query ‘select value from cpu_load_short;’:

[
 [
 {"time": "2009-11-10T23:00:10Z", "value": 10.64},
 {"time": "2009-11-10T23:00:20Z", "value": 20.64},
 {"time": "2009-11-10T23:00:30Z", "value": 30.64},
 {"time": "2009-11-10T23:00:40Z", "value": 40.64}
]
]

postgres

Uses pg_isready tool to verify if PostgreSQL is up and ready to connect.

Parameters:

	pg_host (hostname or socket path, defaults to “localhost” which will use local unix socket, use IP address eg. 127.0.0.1 to connect via tcp)

	pg_port (port, defaults to 5432)

	pg_db_name (database name to connect to, defaults to “postgres”)

	pg_user (username, defaults to “postgres”)

	pg_conn_timeout (defaults to 15 which means 15 seconds)

postgres-primary-streaming-status

Verifies if local PostgreSQL instance is currently serving WALs to a specified replica.
The SQL command that is validated: select * from pg_stat_replication;

Parameters:

	pg_host (hostname or socket path, defaults to “localhost” which will use local unix socket, use IP address eg. 127.0.0.1 to connect via tcp)

	pg_port (port, defaults to 5432)

	pg_db_name (database name to connect to, defaults to “postgres”)

	pg_user (username, defaults to “postgres”)

	pg_password

	pg_conn_timeout (defaults to 15 which means 15 seconds)

	expected_status (defaults to “streaming”)

	expected_replication_user: Expected user that will be used for replication connection (defaults to “replication”)

postgres-replica-status

Checks if local PostgreSQL server acts as a replication server, by validating the list of active wal receivers.
The SQL command that is validated: select * from pg_stat_wal_receiver;

Parameters:

	pg_host (hostname or socket path, defaults to “localhost” which will use local unix socket, use IP address eg. 127.0.0.1 to connect via tcp)

	pg_port (port, defaults to 5432)

	pg_db_name (database name to connect to, defaults to “postgres”)

	pg_user (username, defaults to “postgres”)

	pg_password

	pg_conn_timeout (defaults to 15 which means 15 seconds)

	expected_status (defaults to “streaming”)

	expected_replication_user: Expected user that will be used for replication connection (defaults to “replication”)

docker-container-log

Searches docker container logs for matching given regular expression.

Parameters:

	container: Docker container name

	regexp: Regular expression

	max_lines: Number of last lines to check (defaults to 5)

	since_seconds: Get only logs since this time (eg. last 5 minutes = 5 * 60 = 300) (defaults to 300)

	present: Boolean, if the string should be present in the output or not

smtp_credentials_check.py

Verifies connection, TLS certificate and credentials to a SMTP server by doing a ping + authorization try.

Parameters:

	smtp_host (example: bakunin.example.org)

	smtp_port (example: 25)

	smtp_user (example: noreply@example.org)

	smtp_password (example: bakunin-1936)

	smtp_encryption (example: starttls. Values: “”, “ssl”, “starttls”)

	smtp_timeout (default: 30, unit: seconds)

tls

TLS/SSL certificate expiration validation

Parameters:

	domain: TLS certificate domain for which the certificate was created

	host: IP address or DNS hostname from which the certificate should be downloaded (defaults to domain value)

	port: Port (defaults to 443)

	alert_days_before: Number of days before expiration date to start alerting (defaults to 3)

tls-docker-network

Automated TLS certificate verification for docker-based flows like docker-gen.
Scans list of docker containers basing on a label or environment variable that contains a domain name.

Parameters:

	parameter_type: Label or environment variable

	parameter_name: Name of the label or environment variable

	alert_days_before: Number of days before expiration date to start alerting (defaults to 3)

	docker_host: (Optional) The URL to the Docker host.

	docker_tls_verify: (Optional) Verify the host against a CA certificate.

	docker_cert_path: (Optional) A path to a directory containing TLS certificates to use when connecting to the Docker host

	debug: (Optional) Debugging mode

Check configuration reference

{
 "type": "http",
 "description": "IWA-AIT check",
 "results_cache_time": 300,
 "input": {
 "url": "http://iwa-ait.org",
 "expect_keyword": "iwa",
 "not_expect_keyword": "Server error"
 },
 "hooks": {
 "on_each_up": [
 "rm -f /var/www/maintenance.html"
],
 "on_each_down": [
 "echo \"Site under maintenance\" > /var/www/maintenance.html"
]
 },
 "quiet_periods": [
 {"starts": "30 00 * * *", "duration": 60}
]
}

type

Name of the binary/script file placed in the “checks” directory. At first will look at path specified by “–directory”
CLI parameter, then will fallback to Infracheck internal check library.

Example values:

	disk-space

	load-average

	http

	smtp_credentials_check.py

description

Optional text field, there can be left a note for other administrators to exchange knowledge in a quick way in case
of a failure.

results_cache_time

How long the check result should be kept in cache (in seconds)

input

Parameters passed to the binary/script file (chosen in “type” field). Case insensitive, everything is converted
to UPPERCASE and passed as environment variables.

Notice: Environment variables and internal variables can be injected using templating feature - check Templating

hooks

(Optional) Execute shell commands on given events.

	on_each_up: Everytime the check is OK

	on_each_down: Everytime the check is FAILING

quiet_periods

(Optional) Defines time, when the check results should be ignored. For example setting “30 00 * * *” and 60m duration will
result in ignoring check failure at 00:30 everyday for 60 minutes - till 01:30

Templating

In order to increase the security there is a simple templating mechanism that allows to inject variables into
parameters you define that are passed to the checks.

Example:

{
 "type": "ssh-command",
 "input": {
 "user": "thesecurityman",
 "host": "iwa-ait.org",
 "port": 6200,
 "password": "${ENV.IWA_SECURITY_MAN_PASSWD}",
 "command": "/usr/bin/some-security-check --is-secure",
 "expected_exit_code": 0,
 "timeout": 30
 }
}

Reference table

	Pattern

	Example

	Description

	${ENV.*}

	${ENV.USER}

	Injects an environment variable from the host

	${checkName}

	http

	Name of the currently executed check

	${date}

	2019-10-31T07:53:45.380307

	Current date and time

Example strategy of deploying passwords with Docker Compose and Ansible

	Encrypt your passwords with ansible-vault

	Decrypt them during deployment into .env on target machine for docker-compose

	In docker-compose service definition pass variable explicitly from the .env file

environment:
 # variables in checks
 - IWA_SECURITY_MAN_PASSWD=${IWA_SECURITY_MAN_PASSWD}

Writing custom checks

Infracheck provides very basic scripts for health checking, you may probably want to write your own.
It’s really simple.

	“check” scripts are in “checks” directory of your project structure, here you can add a new check script

	Your script needs to take uppercase environment variables as input

	It is considered a good practice to validate environment variables presence in scripts

	
	Your script needs to return a valid exit code when:

	
	Any of environment variables is missing or has invalid value

	The check fails

	The check success

That’s all!

A few examples:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	#!/bin/bash

#
Directory presence check
#
@author Krzysztof Wesołowski
@url https://iwa-ait.org
#

if [[! "${DIR}"]]; then
 echo "DIR parameter is missing"
 exit 1
fi

if [[! -d "${DIR}"]]; then
 echo "Failed asserting that directory at '${DIR}' is present"
 exit 1
fi

echo "'${DIR}' directory is present"
exit 0

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	#!/usr/bin/env python3

"""
<sphinx>
load-average

Checks if the load average is not below specified number

Parameters:

- max_load (unit: processor cores, example: 5.0, default: 1)
- timing (default: 15. The load average time: 1, 5, 15)
</sphinx>
"""

import os
import sys
import inspect

path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) + '/../../'
sys.path.insert(0, path)

from infracheck.infracheck.checklib.loadavg import BaseLoadAverageCheck

class LoadAverageAuto(BaseLoadAverageCheck):
 def main(self, timing: str, max_load: float):
 current_load_average = self.get_load_average(timing)

 if current_load_average > max_load:
 return False, "Load {:.2f} exceeds allowed max. load of {:.2f}. Current load: {:s}".format(
 current_load_average, max_load, self.get_complete_avg()
)

 return True, "Load at level of {:.2f} is ok, current load: {:s}".format(
 current_load_average, self.get_complete_avg())

if __name__ == '__main__':
 app = LoadAverageAuto()
 status, message = app.main(
 timing=os.getenv('TIMING', '15'),
 max_load=float(os.getenv('MAX_LOAD', 1))
)

 print(message)
 sys.exit(0 if status else 1)

Cache and freshness

It can be harmful to the server to run all checks on each HTTP endpoint call, so the application is running them periodically every X seconds specified by –refresh-time switch or REFRESH_TIME environment variable (in docker)

Refresh time

If you use an official docker image, then you can set an environment variable.

Example: check once a day (good for domains whois check).

REFRESH_TIME=86400

From CLI you can set –refresh-time=86400

Wait time

Some checks could call external APIs, those can have limits. A good example is a domain-expiration check which is using whois.
Set –wait=60 to for example wait 60 seconds before each check - where check is a single entry on the list of checks.

Customizing check freshness time per check

Beside the global setting of refresh time there could be a per-check setting called “results_cache_time”.

Example of caching the check result for at least 300 seconds

{
 "type": "swap-usage-max-percent",
 "results_cache_time": "300",
 "input": {
 "max_allowed_percentage": 0
 }
}

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/quick-start.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 RiotKit’s Infracheck

 		
 Quick start

 		
 1. Requirements

 		
 2. Structure

 		
 3. Configuring a first check

 		
 4. Running checks

 		
 Advanced

 		
 Hooks

 		
 Predefined check types reference

 		
 http

 		
 rkd://

 		
 dir-present

 		
 file-present

 		
 docker-health

 		
 port-open

 		
 replication-running

 		
 free-ram

 		
 domain-expiration

 		
 disk-space

 		
 ovh-expiration

 		
 ssh-fingerprint

 		
 ssh-files-checksum

 		
 ssh-command

 		
 reminder

 		
 load-average-auto

 		
 load-average

 		
 swap-usage-max-percent

 		
 influxdb-query

 		
 postgres

 		
 postgres-primary-streaming-status

 		
 postgres-replica-status

 		
 docker-container-log

 		
 smtp_credentials_check.py

 		
 tls

 		
 tls-docker-network

 		
 Check configuration reference

 		
 type

 		
 description

 		
 results_cache_time

 		
 input

 		
 hooks

 		
 quiet_periods

 		
 Templating

 		
 Reference table

 		
 Example strategy of deploying passwords with Docker Compose and Ansible

 		
 Writing custom checks

 		
 Cache and freshness

 		
 Refresh time

 		
 Wait time

 		
 Customizing check freshness time per check

_static/up-pressed.png

_static/up.png

_static/quick-start.png

